Una ecuación es una igualdad matemática entre dos expresiones, denominadas miembros y separadas por el signo igual, en las que aparecen elementos conocidos o datos, desconocidos o incógnitas, relacionados mediante operaciones matemáticas. Los valores conocidos pueden ser números, coeficientes o constantes; también variables o incluso objetos complejos como funciones o vectores, los elementos desconocidos pueden ser establecidos mediante otras ecuaciones de un sistema, o algún otro procedimiento de resolución de ecuaciones. Las incógnitas, representadas generalmente por letras, constituyen los valores que se pretende hallar (en ecuaciones complejas en lugar de valores numéricos podría tratarse de elementos de un cierto conjunto abstracto, como sucede en las ecuaciones diferenciales). Por ejemplo, en la ecuación algebraica simple:
La variable representa la incógnita, mientras que el coeficiente 3 y los números 1 y 9 son constantes conocidas. La igualdad planteada por una ecuación será cierta o falsa dependiendo de los valores numéricos que tomen las incógnitas; se puede afirmar entonces que una ecuación es una igualdad condicional, en la que solo ciertos valores de las variables (incógnitas) la hacen cierta.
Se llama solución de una ecuación a cualquier valor individual de dichas variables que la satisfaga. Para el caso dado, la solución es:
En el caso de que todo valor posible de la incógnita haga cumplir la igualdad, la expresión se llama identidad. Si en lugar de una igualdad se trata de una desigualdad entre dos expresiones matemáticas, se denominará inecuación.
El símbolo «=», que aparece en cada ecuación, fue inventado en 1557 por Robert Recorde, que consideró que no había nada más igual que dos líneas rectas paralelas de la misma longitud.
1.1. Uso de ecuaciones.
La ciencia utiliza ecuaciones para enunciar de forma precisa leyes; estas ecuaciones expresan relaciones entre variables. Así, en física, la ecuación de la dinámica de Newton relaciona las variables fuerza F, aceleración a y masa m: F = ma. Los valores que son solución de la ecuación anterior cumplen la primera ley de la mecánica de Newton.
Por ejemplo, si se considera una masa m = 1 kg y una aceleración a = 1 m/s, la única solución de la ecuación es F = 1 kg·m/s = 1 newton, que es el único valor para la fuerza permitida por la ley.
Por ejemplo, si se considera una masa m = 1 kg y una aceleración a = 1 m/s, la única solución de la ecuación es F = 1 kg·m/s = 1 newton, que es el único valor para la fuerza permitida por la ley.
Ejemplos:
- ecuación de estado.
- ecuación de movimiento.
- ecuación constitutiva.
El campo de aplicación de las ecuaciones es inmenso, y por ello hay una gran cantidad de investigadores dedicados a su estudio.
Según autores como Ian Stewart, "el poder de las ecuaciones (...) recae en la correspondencia filosóficamente difícil entre las matemáticas -una creación colectiva de mentes humanas- y una realidad externa física"
1.2. Tipos de ecuaciones.
Las ecuaciones suelen clasificarse según el tipo de operaciones necesarias para definirlas y según el conjunto de números sobre el que se busca la solución.
Entre los tipos más comunes están:
Entre los tipos más comunes están:
- Ecuaciones algebraicas.
- De primer grado o lineales.
- De segundo grado o cuadráticas.
- De tercer grado o cúbicas.
- Diofánticas o diofantinas.
- Racionales, aquellas en las que uno o ambos miembros se expresan como un cociente de polinomios.
- Ecuaciones trascendentes, cuando involucran funciones no polinómicas, como las funciones trigonométricas, exponenciales, logarítmicas, etc.
- Ecuaciones diferenciales.
- Ordinarias.
- En derivadas parciales.
- Ecuaciones integrales.
- Ecuaciones funcionales.
Una ecuación diofántica es aquella cuya solución sólo puede ser un número entero, es decir, en este caso A ⊆ ℤ.
Una ecuación funcional es aquella en la que algunas de las constantes y variables que intervienen no son realmente números sino funciones; y si en la ecuación aparece algún operador diferencial se llama ecuación diferencial.
Cuando A es un cuerpo y f un polinomio, se tiene una ecuación algebraica polinómica.
En un sistema de ecuaciones lineales, el conjunto A es un conjunto de vectores reales y la función f es un operador lineal.
2. Resolución de ecuaciones.
Resolver una ecuación es encontrar su dominio solución, que es el conjunto de valores de las incógnitas para los cuales la igualdad se cumple.
Por lo general, los problemas matemáticos pueden expresarse en forma de una o más ecuaciones; sin embargo no todas las ecuaciones tienen solución, ya que es posible que no exista ningún valor de la incógnita que haga cierta una igualdad dada. En ese caso, el conjunto de soluciones de la ecuación será vacío y se dice que la ecuación no es resoluble. De igual modo, puede tener un único valor, o varios, o incluso infinitos valores, siendo cada uno de ellos una solución particular de la ecuación.
Si cualquier valor de la incógnita hace cumplir la igualdad (esto es, no existe ningún valor para el cual no se cumpla) la ecuación es en realidad una identidad.
2.1. Ecuaciones algebraicas.
Una ecuación algebraica es aquella que contiene sólo expresiones algebraicas, como polinomios, expresiones racionales, radicales y otras.
Por ejemplo:
Por ejemplo:
Se llama ecuación algebraica con una incógnita la ecuación que se reduce a lo que sigue:
Donde n es un número entero positivo; α0, α1, α2, ..., αn – 1, αn se denominan coeficientes o parámetros de la ecuación y se toman dados; x se nombra incógnita y se busca su valor. El número n positivo se llama grado de la ecuación Para definir un número algebraico, se consideran números racionales como coeficientes.
Forma canónica: Realizando una misma serie de transformaciones en ambos miembros de una ecuación, puede conseguirse que uno de ellos se reduzca a cero. Si además se ordenan los términos según los exponentes a los que se encuentran elevadas las incógnitas, de mayor a menor, se obtiene una expresión denominada forma canónica de la ecuación. Frecuentemente suele estudiarse las ecuaciones polinómicas a partir de su forma canónica, es decir aquella cuyo primer miembro es un polinomio y cuyo segundo miembro es cero.
En el ejemplo dado, sumando 2xy y restando 5 en ambos miembros, y luego ordenando, obtenemos:
Grado: Se denomina grado de una ecuación polinomial al mayor exponente al que se encuentran elevadas las incógnitas.
Por ejemplo:
Es una ecuación de tercer grado porque la variable x se encuentra elevada al cubo en el mayor de los casos.
Las ecuaciones polinómicas de grado n de una sola variable sobre los números reales o complejos, pueden resolverse por el método de los radicales cuando n < 5 (ya que en esos casos el grupo de Galois asociado a las raíces de la ecuación es soluble). La solución de la ecuación de segundo grado es conocida desde la antigüedad; las ecuaciones de tercer y cuarto grado se conocen desde los siglos XV y XVI, y usan el método de radicales. La solución de la ecuación de quinto grado no puede hacerse mediante el método de radicales, aunque puede escribirse en términos de la función theta de Jacobi.
3. Ecuaciones de Primer Grado.
Una ecuación de primer grado o ecuación lineal es una igualdad que involucra una o más variables a la primera potencia y no contiene productos entre las variables, es decir, una ecuación que involucra solamente sumas y restas de una variable a la primera potencia. En todo anillo conmutativo pueden definirse ecuaciones de primer grado.
3.1 En una incógnita
Una ecuación de una variable
Definida sobre un cuerpo
, es decir, con
Donde x es la variable, admite la siguiente solución:
Cuando tanto la incógnita como los coeficientes son elementos de un anillo que no es un cuerpo, el asunto es más complicado ya que sólo existirán soluciones cuando m divide a n:
3.2. En dos incógnitas.
En el sistema cartesiano representan rectas. Una forma común de las ecuaciones lineales de dos variables es:
Donde
representa la pendiente y el valor de
determina el punto donde la recta corta al eje Y (la ordenada al origen).
Algunos ejemplos de ecuaciones lineales:
3.3. Formas alternativas.
Formas complejas como las anteriores pueden reescribirse usando las reglas del álgebra elemental en formas más simples. Las letras mayúsculas representan constantes, mientras x e y son variables.
- Ecuación general
Aquí A y B no son ambos cero. Representa una línea en el cartesiano. Es posible encontrar los valores donde x e y se anulan.
- Ecuación segmentaria o simétrica
Aquí ni E ni F no pueden ser cero. El gráfico de esta ecuación corta al eje X y al eje Y en E y F respectivamente.
- Forma paramétrica
Dos ecuaciones que deben cumplirse de manera simultánea, cada una en la variable t. Puede convertirse a la forma general despejando t en ambas ecuaciones e igualando. En esta representación puede afirmarse que la recta pasa por el punto
y forma con el eje de abcisas un ángulo cuya tangente satisface:
3.4. Ecuación lineal en el espacio n-dimensional.
Las ecuaciones lineales de varias variables admiten también interpretaciones geométricas, cuando los coeficientes de la ecuación pertenecen a un cuerpo. Así una función lineal de dos variables de la forma
Representa una recta en un plano. En varias variables asumiendo que tanto las variables
y los coeficientes
, donde
es un cuerpo entonces una ecuación lineal como la siguiente:
representa un hiperplano de n-1 dimensiones en el espacio vectorial n-dimensional
.
4. Sistemas de ecuaciones lineales,
Los sistemas de ecuaciones lineales expresan varias ecuaciones lineales simultáneamente y admiten un tratamiento matricial. Para su resolución debe haber tantas ecuaciones como incógnitas y el determinante de la matriz ha de ser real y no nulo. Geométricamente corresponden a intersecciones de líneas en un único punto (sistema lineal de dos ecuaciones con dos incógnitas), planos en una recta (dos ecuaciones lineales de tres incógnitas) o un único punto (tres ecuaciones lineales de tres incógnitas). Los casos en los que el determinante de la matriz es nulo no poseen solución.
Si se consideran n ecuaciones de primer grado linealmente independientes definidas sobre un cuerpo entonces existe solución única para el sistema si se dan las condiciones del teorema de Rouché-Frobenius, que puede ser calculada mediante la regla de Cramer que es aplicable a cualquier cuerpo. Si las ecuaciones no son linealmente independientes o no se dan las condiciones del teorema la situación es más complicada. Si el sistema se plantea sobre un anillo conmutativo que no sea un cuerpo, la existencia de soluciones es también más complejas.
5. Ecuaciones de Segundo Grado.
Una ecuación de segundo grado o ecuación cuadrática de una variable es una ecuación que tiene la expresión general:
donde
donde x es la variable, y a, b y c constantes; a es el coeficiente cuadrático (distinto de 0), b el coeficiente lineal y c es el término independiente. Este polinomio se puede interpretar mediante la gráfica de una función cuadrática, es decir, por una parábola. Esta representación gráfica es útil, porque las intersecciones o punto tangencial de esta gráfica, en el caso de existir, con el eje X coinciden con las soluciones reales de la ecuación.
5.1. Solución de una ecuación de segundo grado.
Para una ecuación cuadrática con coeficientes reales o complejos existen siempre dos soluciones, no necesariamente distintas, llamadas raíces, que pueden ser reales o complejas (si los coeficientes son reales y existen dos soluciones no reales, entonces deben ser complejas conjugadas). Fórmula general para la obtención de raíces:
Se usa ± para indicar las dos soluciones:
y
6. Ecuaciones de grado mayor de 2.
Las ecuaciones de grado superior a dos son ecuaciones de tercer, cuarto o grado superior sólo pueden resolverse en algunos casos con los conocimientos elementales.
Supongamos que la ecuación está dada en la forma P(x) = 0.
La resolución se basa en la descomposición del polinomio P(x) en factores. Esto lo haremos generalmente utilizando la regla de Ruffini. Hecho esto, basta igualar a cero cada uno de los factores y resolver las ecuaciones de primer grado y de segundo grado resultantes.
Para que las ecuaciones de tercer grado (o grado superior) se puedan resolver a nivel elemental deben tener alguna raíz entera, que se encuentra entre los divisores del término independiente.
Advertencia: no pase a la siguiente Unidad sin haber contestado el Banco de Preguntas de esta unidad. REcuerde que la programación establece el estudio de una guía por semana.
Ir a la Unidad 11 - VI, titulada PROPIEDADES Y ESTADO DE LA MATERIA.